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T. T. LAM AND Y. BAYAZITOGLU 

Department of Mechanical Engineering and Matrrials Science, Rice University, Houston. Texas 77001, U.S.A. 

SUMMARY 

The Orr-Sommerfeld equation is solved numerically for a layer of liquid film flowing down an inclined plane 
under the action of gravity using the sequential gradient-restoration algorithm (SGRA). The method consists 
of solving the governing equation as it is a Bolza problem in the calculus of variations. The neutral stability 
curves, eigenvalues and eigenfunctions to  the stability problem can be determined simultaneously during the 
process. 
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INTRODUCTION 

The Orr-Sommerfeld equation governs the linear stability characteristics of a basic two- 
dimensional incompressible laminar parallel flow with respect to an infinitesimal two-dimensional 
disturbance. It is a fourth-order linear homogeneous ordinary differential equation which contains 
three parameters, first derived independently by Orr' and Sommerfeld.2 The difficulties associated 
with solving this eigenvalue problem are well known. No exact solution of this equation has been 
obtained for a general velocity profile, except for a constant plane Poiseuille flow. 

Numerous methods have been presented to calculate the eigenvalues and eigenfunctions of the 
Orr-Sommerfeld equation. An excellent review of various numerical methods for the solution of 
the equation has been given by Gersting and Jankow~ki .~  The Orr-Sommerfeld equation has 
frequently been applied for investigating the stability of channel flow, Blasius boundary layer 
profile, shear layer, laminar jet and developed wake. Approximate solutions to the Orr- 
Sommerfeld equation for free surface flows have also received much attention in the past. The 
problem of the stability of a layer of liquid flowing down an inclined plane under the action of 
gravity was formulated rigorously by Yih4 as an eigenvalue problem for the determination of the 
complex phase velocity. Benjamin' approximated the eigenfunction by using a power series 
expansion in the co-ordinate normal to the inclined plane and obtained accurate results. Later, 
Yih,6 solved the eigenvalue problem by an expansion in powers of the wave number. The 
expansions used by Benjamin and Yih gave the same results to the flow under consideration if one 
considers their choice of the reference velocity. The critical Reynolds number Re, was found to be 

The foregoing analysis is valid for long waves only, that is the assumption of small wave number 
a has been made in the calculation. Without making such an assumption, Graef7 'performed a 
numerical calculation by power series expansion of ctRe. Whitaker' obtained a solution by direct 
numerical integration, but the method fails to converge in a region near the neutral stability curve. 

Re, = 2 cot p. (1 )  
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By replacing the velocity with its constant value at the free surface while keeping the second 
derivative of the velocity at  its true value, Anshus and Goren’ were able to obtain a simpler 
solution to the equation, and the eigenvalues were able to be determined by a numerical technique. 
Benney” found an asymptotic solution to the problem. Lin’ employed a method consisting of 
obtaining asymptotic series solutions of the Orr-Sommerfeld equation by solving the inviscid 
equation and a related differential equation by use of the Frobenius method. de BruinI2 solved the 
same problem by employing the orthonormalization technique. Although all the techniques 
mentioned previously are reliable, it is felt that a less tedious and more economical method such as 
the sequential gradient-restoration algorithm (SGRA) could be employed to solve the Orr- 
Sommerfeld equation. Our principal aim is to present a reliable method for solving Orr- 
Sommerfeld problems which is simple to understand and to use; at the same time, we wish to obtain 
good accuracy. It is the purpose of the present paper to examine the stability of liquid flowing down 
an inclined plane by the SGRA developed by Miele and his  associate^.'^-'^ It is possible to 
calculate very accurately both the eigenvalues and the eigenfunctions. Some numerical results are 
presented and compared with the results of other methods. 

Following an outline of the physical problem and brief description of the algorithm, the Orr- 
Sommerfeld equation is solved as it is a Bolza problem in the calculus of variations. Numerical 
results are presented and compared. Finally, some concluding remarks close the paper. 

THE ORR-SOMMERFELD PROBLEM 

An incompressible liquid film of thickness d with constant physical properties flows down an 
inclined plane with an angle fi to the horizontal, the gravitational acceleration is balanced by the 
viscosity force of the fluid. In a Cartesian co-ordinate system (x, y, z) ,  the primary flow is parallel 
to the x-axis, and the y-axis is normal to the plane directed downward; the origin is taken on 
the undisturbed free surface. The first rigorous formulation of the problem based on linear 
stability theory was given by Yih.4,6 The governing differential equation is the well-known 
Orr-Sommerfeld equation: 

@”” - 2a2@” + a4@ = iaRe[(U - c)(@” - a 2 @ )  - u”@], (2) 

where U is the steady state velocity distribution, which is given by 

U = 1.5(1 - y2). (3) 
The boundary conditions corresponding to equation (2) are 

wall, y = 1: 

free stream, y = 0: 

a(3 cot fi + a2S,Re) 
@ + a[Re(c - 1.5) + 3ai]@’ - i W  = 0, 

C -  1.5 (7) 

in which the prime denotes a derivative with respect to y. The boundary conditions (4) and (5) are 
the no-slip conditions at the wall. By neglecting the viscosity of the air above the liquid film, 
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equation (6)  expresses the fact that there can be no tangential stress at the free surface. The last 
boundary condition (7) shows a balance of the normal stress and the surface tension at the surface. 

Equation (2), together with the linearized boundary conditions (4)-(7) constitutes an eigenvalue 
problem. A non-trivial function @ satisfies all these conditions only if there exists a functional 
relationship such that 

F(a ,  Re,  c, S , ,  B) = 0. 

Our main objective is to seek a solution of the form c = c(c(, Re)  for given values of B and S, such that 
the eigenvalue relation is satisfied. In general, the eigenvalue c is a complex quantity, i.e. 

c = c,(c(, Re)  + ici(a, R e ) .  

The sign of the imaginary part, ci, determines the stability condition for a given flow. For a real a, if 
ci > 0, the disturbance remains of constant amplitude in the x-direction but grows exponentially in 
time; therefore the flow is unstable according to linear theory. If ci < 0, the disturbance will decay in 
time, and the flow will be stable with respect to infinitesimal disturbances. Thus the a-Re plane may 
be divided into regions where ci < 0 and regions where ci > 0. These regions are separated by the 
curve denoted by ci(c(, Re)  = 0. This curve is the neutral stability curve on which infinitesimal waves 
are neither damped nor amplified. The lower extremum of the neutral stability curve defines a 
minimum Reynolds number, the critical Reynolds number, Re, ,  at which instability will set in. 
A primary objective of hydrodynamic stability analysis is the determination of this critical value. 

METHOD OF SOLUTION 

The method employed in this study is to solve the governing equation (2) as it is a Bolza problem. 
In this section we outline the Bolza problem in classical optimal control theory and introduce the 
sequential gradient-restoration algorithm (SGRA) which is useful for solving the resulting 
differential system. It is then followed by the application of the SGRA to the stability problem. 

Bolza problem 

Minimize the functional 

with respect to the state ~ ( y ) ,  the control u(y),  and the parameter II which satisfy the following 
constraints: 

In the above equations, the functions f, h, g are scalar, and the functions +, S, o, \Ir are vectors of 
appropriate dimensions. The independent variable y is a scalar, and the dependent variables x, u, n, 
are vectors of appropriate dimensions. The subscript 0 denotes the initial point, and the subscript 1 
denotes the final point. 

Let X(y), p(y),  6, p denote Lagrange multipliers associated with the constraints (9). With this 
understanding, the first-order optimality conditions take the form 
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1'-f,++,h-S,p=O, o < y <  1, ( 1 Oa) 

Summarizing, we seek the functions ~ ( y ) ,  u(y), n and the multipliers 5(y), p(y), c, p such that the 
feasibility equations (9) and the optimality conditions (10) are satisfied. 

Approximation method 

In general, the differential system (9)-(10) is non-linear, and an approximation method must be 
used to seek a solution iteratively. In this connection, let P denote the norm squared of the errors 
associated with the feasibility equation(9), and let Q denote the norm squared of the errors 
associated with the optimality condition (10): 

(12) 
1 

+ N ( - h  + h, + O,(T)O + N ( 5  + 9, + $,p)1. 
For the exact optimal solution, one must have 

P=O, Q E O .  ( 1  3a, b) 

For an approximation to the optimal solution, the following relations are to be satisfied: 

P < E ~ ,  Q < E ~ .  ( 14a, b) 

where c l (  = 10-l6) and E ~ (  = are preselected, small, positive numbers. 

Sequential gradient-restoration algorithm 

Over the past several years, a successful family of first-order algorithms for the solution of optimal 
control problems involving differential constraints, non-differential constraints and terminal 
constraints has been developed at Rice University by Miele and his  associate^.'^-'^ They are 
called sequential gradient-restoration algorithms (SGRA) and have been designed for the solution 
of different classes of optimal control problems. 

Sequential gradient-restoration algorithms involve a sequence of cycles, each with two-phases: 
the gradient phase and the restoration phase. In the gradient phase, the value of the augmented 
functional is decreased while avoiding excessive constraint violation; in the restoration phase, the 
constraint error is decreased while avoiding excessive change in the value of the functional. In a 
complete gradient-restoration cycle, the value of the functional is decreased while the constraints 
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are satisfied to a predetermined accuracy. Hence, a succession of suboptimal solutions is obtained. 
The algorithmic details of SGRA can be found in References 13-17. 

Application of the SGRA 

The SGRA has been successfully applied to the study of the Benard problem by Lam and 
Bayazitoglu.” To show the applicability of the SGRA to the solution of the Orr-Sommerfeld 
equation, stability of a thin liquid film flowing down an inclined plane is solved. 

The profiles of the stream function amplitude, @(y) ,  and the wave velocity, c, are complex 
quantities: 

( 1  5 )  

(16) 
in which subscripts r and i denote the real and imaginary parts of the quantity. For computational 
purposes the solution is carried out in a real number system. Instead of solving the fourth-order 
equation (2), a system of fourth-order equations is solved. By substituting equations ( 1  5) and ( 1  6) 
into equations (2)-(7), and separately equating the real and imaginary parts of each equation to 
zero, we obtain the following modified eigenvalue problem. 

@ = 0, + iOi, 

c = c, + ici, 

Governing equation 

@? - 2 ~ ~ 0 , : ’  + a4@, = - aRe[(U - c,)(@y - - ci(@: - a’@,) - U”@J, (17) 

(18) - 2a’CDr + a4mi = a R e [ ( U  - c,)(@,:’ - a’@,) + ci(@y - a2mi )  - u”Q~];  

Boundary conditions. 

at the rigid surface, y = 1 
@, = 0, 

@i = 0, 

@: = 0, 

0; = 0, 

at the free surface, y = 0 

3ci 

3ci 

oi = 0, 

0, = 0, 

(c, - 1.5)’ + C: + 1.r - 

1.i + 

- 3(cr- 1.5) 
(c, - 1.5)’ + C: 

3 ( ~ ,  - 1.5) 
(c, - 1.5)’ + C: (c, - 1.5)’ + C: 

[ 

a(3 cot p + a’S,Re) 
[ (c,  - 1.5)@,, + ciOi] + aRe(c, - 1.5)@: - a(ciRe + 3a)@i + @: = 0, (25) (c, - 1.5)’ + C: 

a(3 cot p + a2S,Re) 
[(c, - 1.5)Qi - ci@,] + aRe(c, - l.5)@; + a(ciRe + 3a)@: - CP:’ = 0. (26) (c, - 1.5)’ + C: 

Now we are ready to demonstrate how the equations (17)-(26) for the stability problem can be 
recast into an optimal control problem. We employ scalar notation in the following development. 
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In particular, the symbol y denotes the non-dimensional spatial variable; the symbols xi(y), 
i = 1,.  . . , m, denote the components of the state (Qr and Qi and their derivatives) and the symbols 
ni = 1 , .  . . , n, denote the components of the parameter (7c: = CI, = Re, z i  = cr). Once the 
conversion is completed, the resulting optimal control problem can be solved subject to the 
boundary conditions. We define eleven new variables: 

Lm = @ ; m - 1 )  m =  1,2,3,4 
m i ,  = Q ( m - 5 )  m = 5,6,7,8 

n1 = Ja, 

7T3 = Jcr. 
x2 = J R e ,  

With these notations, the differential equations ( 1  7) and ( 1  8) may be written as a system of first- 
order differential equations. Thus, we recast the convective instability problem presented 
previously into an optimal control problem which can be stated as 

minimize I = 7c;, (27) 

x; = x 2 ,  (28) 

subject to the differential constraints 

and boundary conditions 
at the rigid surface, y = 1: 

i l l  =o, 
x s  = 0, 

x 2  = 0, 

x6 = O; 

at the free surface, y = 0 
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The system denoted by equations (27)-(43) constitutes an optimal control problem. In comparison 
with the Bolza problem outlined previously, it differs only by letting the functionsf, y, the control 
(u) and the non-differential constraint (S) equal zero. The function h is simply n:. 

SOLUTION AND COMPUTATIONAL RESULTS 

The SGRA was programmed in FORTRAN IV, and the numerical results were obtained in 
double-precision arithmetic. The interval of integration was divided into 100 steps. The 
differential systems were integrated using Hamming’s modified predictor-corrector method with 
a special Runge-Kutta procedure to start the integration routine. The definite integrals, I ,  P, Q 
were computed using a modified Simpson’s rule. 

Once again, the symbol y denotes the non-dimensional spatial variable, the symbols x,(y), 
i = 1,. . . , denotes the components of the state (the real and imaginary part of the stream function 
amplitude, (Dr and (Di and their derivatives) and x:, n: and n: represent the wave number, ci, the 
Reynolds number, Re, and the real part of the wave velocity, c,, respectively. 

Since all the differential constraints (28)-(35) and the boundary conditions (36)-(43) are 
homogeneous, we are free to impose a suitable normalization condition on the solution. The 
condition being used here is setting ~ ~ ( 1 )  = 1. 

The optimal control problem as designated by equations (27)-(43) was solved by specifying the 
values of ci, j3 and S,. Let us first examine the case for j3 = lo, S ,  = 0 and ci = 0 for details. The 
following nominal functions are selected with discretion: 

x 1  = (2Y + 1)(1 - Y)’, 

x 2  = 2(1 - Y)’ - 2(2Y + 1)(1 - Y), 

x3 = 2(2Y + 1) - 8(1 - Y),  

x4 = 12, 

x 5  = -YZ(l - Y L  

x7 = 6Y - 2, 

x6 = - 2Y(l - y) + y’, 

x 8  = 6, 

n1 = 0.5, 

71’ = 8, 

n3 = 2, 

which are not consistent with the boundary conditions (36)-(43) and violate the constraints (28)- 
(35). Since these nominal functions do not constitute a feasible solution, the algorithm starts with a 
restoration phase. This restoration phase included N ,  = 13 iterations and leads to new nominal 
functions (labelled N ,  = 1) consistent with the equations (28)-(43) within the preselected accuracy 
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(14a). Next, the algorithm was employed cyclically until a solution consistent with inequalities (14) 
was found. This situations arose for N ,  = 13, that is at the end of 13 cycles of the algorithm. 

The numerical results are presented in Table I. It shows the number of gradient iterations per 
cycle. N,, and the number of restorative iterations per cycle, N,,  versus the cycle number, N,. 
Clearly, the total number of iterations for convergence is 

N ,  = C N ,  + C N ,  = 13 + 43 = 56. 

Table I also shows the functional I (  = n: = Re), the constraint error P and the error in the 
optimality conditions Q versus the cycle number N,. 

Results for the neutral curve are given in Table I1 and Figures 1 and 2. The eigenfunction for an 
inclination angle of p = lo(& = 47.741 68, (x = 0, c, = 3, S ,  = 0) is given in Figure 3. 

Critical Reynolds numbers, wave numbers and the real parts of the wave velocity for 
overstability are determined for various non-dimensional surface tensions, S,. The results are 
shown in Table 111. One can see that surface tension is the stabilizing factor. 

The results obtained from the present study are compared with the results obtained by different 
methods in Table IV for various angles of inclination. The reduction of the angle inclination is also 

Table I. Convergence history for /3 = lo ,  ci = 0 and S,  = 0 

N c  N ,  N ,  P Q I 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 

- 

1 
1 
1 
I 
1 
1 
1 
1 
I 
1 
1 
1 
1 

- 0.502 x lo5 
13 0.124 x 
3 0.199 x 
3 0.249 x 
2 0.303 x lo-" 
3 0.471 x 
3 0.454 x 
3 0.183 x 
3 0.496 x 
2 0.919 x lo-'" 
2 0.480 x 
2 0.106 x lo-'' 
2 0.231 x lo-" 
2 0.193 x 

- 64.0 
0.139 x 10' 49.2 
0.421 x 10' 48.5 
0.636 48.0 
0.131 47.8 
0.298 x lo- '  47.8 
0.817 x 47.7 
0.250 x lo-' 47.7 
0.792 x 47.1 
0.249 x 47.1 
0.732 x 47.7 
0.170 x 47.7 
0.169 x 47.1 
0.468 x 41.1 

0.4 - 
Stable 

0.3 - 

a 0.2 - Unstable 

0.1 - 
Neutral curve 

0.0 
45 50 55 60 6 5  70 

Re 

5 

Figure 1 .  The neutral stability curve for the wave number as a function of the Reynolds number for = I "  and S, = 0 
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45 50 55 60 65 70 . 

Re 
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Figure 2. The neutral stability curve for the wave velocity c, as a function of the Reynolds number for /I = I ' and S ,  = O  

Y 

Figure 3. The eigenfunction Q(y)  for the case fi  = l o ,  S, = 0, Re = 47.74168, a = 0.000296 and c, = 3.0. The normalized 
condition is 0; (1) = 1.0 

Table 11. Values of Re, a and c,  for points on the 
neutral stability curve for p = 1' and S,  = 0. 

49.20626 
4853859 
48.00664 
47.82530 
47.76519 
47.74885 
47.74403 
47.74248 
47.74194 
47.741 76 
47.74 1 70 
47.74168 
47.74 168 

0.9819518 x lo- '  
0.7163170 x lo- '  
0.4086090 x lo-'  
0.2286410 x lo-'  
0.1211373 X lo-'  
0.6698733 x lo-' 
0.3857569 x lo-' 
0.2279302 x lo-' 
0.1367853 x lo-' 
0.8343063 x 
0.5225243 x 
0.3549682 x 
0.2955597 x 

2.973069 
2.985241 
2.995066 
2.998439 
2.999561 
2.999866 
2.999956 
2.999983 
2.999994 
2.999997 
3.0 
3.0 
3.0 
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Table 111. Critical Re, a and c, for the case [j = 90" for various S ,  and ci 

ci = 0.05 ci = 0.1 ci = 0.2 

s, Re a cr Re a C' Re a cr 

0 0.214 0.338 2.713 0.437 0.335 2.706 0.952 0.322 2,677 
500 1.309 0.048 2.989 2.692 0.047 2.976 6.067 0.044 2.922 

1000 1.836 0.034 2.992 3.770 0.034 2.979 8.518 0.031 2.925 

Table IV. Comparison of the critical Reynolds numbers, Re, for S ,  = 0 

90 45 1 3 0  1 0  Method of solution 

0 0.833 47.742 95.491 286.478 Power series expansion of y ;  
Reference 5 
Power series expansion of a; 
Reference 6 
Asymptotic expansion; 
Reference 10 

and Frobenius method; 
Reference 11 

orthonormalization techni- 
que; Reference 12 

0 -  48.0 - 286.667 Asymptotic series solution 

0 -  48.0 - - Numerical integration with 

0 0.833 47.742 95.491 286.467 Present study 

the stabilizing factor. This comparison shows that the sequential gradient-restoration algorithm is 
an excellent numerical method for the solution of Orr-Sommerfeld problems. 

CONCLUDING REMARKS 

The sequential gradient-restoration algorithm (SGRA) is presented for the solution of the Orr- 
Sommerfeld equation. The agreement of the results of this study with the existing solutions is 
excellent, as shown in Table IV. The present method is rapid and highly accurate. Once the 
computer code of the procedure is completed, it requires only to change the governing equation 
and boundary conditions for different problems. It is possible to compute the neutral stability 
curves, eigenvalues and eigenfunctions simultaneously. 

The method requires a choice of trial functions at  the beginning of the iterative process similar 
to the Galerkin method, but the trial functions used in the SGRA need not satisfy the boundary 
conditions or the differential constraints. Provided that the initial guess in the iteration procedure 
is chosen with discretion, convergence to a solution is quite rapid, and the accuracy of the solution 
is limited only by the error allowed in calculating the performance indexes. Small allowable error 
gives infinite-order accuracy in the approximate solution of the linearized stability problem. On the 
contrary, the Galerkin method requires an extensive search for suitable trial functions, and higher 
order approximations are needed to obtain accurate results. The SGRA also has an advantage over 
the schemes by power series expansion or asymptotic representation: it does not require an 
extensive mathematical investigation. 

The present numerical method is not free from difficulties. If the slopes of the actual 
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eigenfunctions in the stability problem change rapidly (i.e. spline) over the range of integration, as 
in the case of the plane Poiseuille probelm, a close estimate of the eigenfunctions for the iterative 
procedure might be required to converge to the exact values within a reasonable number of 
iterations during the process. 

In summary, the sequential gradient-restoration algorithm described in this work provides a 
powerful tool for finding solutions to the Orr--Sommerfeld equation. It is a straightforward matter 
to use the SGRA to study hydrodynamic stability problems. The method should be useful in the 
investigation of the stability of other flows. The technique is applicable to linear as well as non- 
linear differential equations without modification. It gives convenient, accurate, and efficient 
approximations to the solution of hydrodynamic stability problems. 

NOMENCLATURE 

wave velocity 
film thickness 
function appearing in Equation (8) 
function appearing in Equation (8) 
function appearing in Equation (8) 

functional defined by Equation (8) 
number of cycles 
total number of iterations in the gradient phase 
total number of iterations in the restoration phase 
total number of iterations for the problem 
performance index for the constraint error 
performance index for the optimality condtions 
Reynolds number 
non-differential constraint, equation (9b) 
dimensionless surface tension 
control, equation (8) 
dimensionless velocity of the primary flow 
dimensionless co-ordinates 
wave number 
angle of inclination 
Lagrange multiplier associated with 9 
Lagrange multiplier associated with JI 
parameter appearing in equation (8) 
Lagrange multiplier associated with S 
Lagrange multiplier associated with o 
defined by equation (9a) 
stream function amplitude 
dummy variable for a) 

final condition, equation (9d) 
initial condition, equation (9c) 

J-1 

Subscripts 
C critical quantity 
i imaginary part 
r real part 
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